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Some Properties of Maximum Likelihood Strategy
for Re-Pairing Broken Random Sample'

By Prem K. Goel & T. Ramalingam
The Ohio State University and Northern Illinois University.

Abstract

Matching data from a bivariate population is considered when observations are
available only in the form of a broken random sample. In other words, a random
sample of n pairs is drawn from the population but the observed data consist of n
observations on the second component and the n observations on an unknown
permutation of the first component of the n pairs of data. A maximum likelihood
matching strategy is revisited. The proportion of approximately correct matches (due
to Yahav) is used to evaluate the performance of the pairing strategy as n-4 .. The
small sample behavior of this proportion is studied via a Monte-Carlo simulation in the
special case of bivariate normal parent population.

Keywords and Phrases: Matching Problem, Maximum likelihood pairing,
asymptotic properties, exchangeability, e -matching,
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Some Properties of Maximum Likelihood Strategy
for Re-Pairing Broken Random Sample

By Prem K. Goel & T. Ramalingam
The Ohio State University and Northern Illinois University.

1. Introduction. An important tool for analyzing economic policies is the
microanalytic model. Many Federal agencies use such models for the evaluation of
policy proposals. When all the input-data for the model come from a single source,
the quality of the model depend on, among others, how complete the information is on
jointly observed variables. Often times, the input for the model consists of data from
more than one Federal Agency. For instance, to make-up for 'gaps' that occur in
decennial Census, the Bureau of the Census and the Internal Revenue Service
provide marginal information on variables. However, joint information on these
variables is not available to either of the two agencies. In such cases, Federal
statisticians use file merging methodology in order to produce comprehensive data on
variables of interest. A review of the origin, progress and recent developments of this
methodology is given in Radner et al (1980).

An unified frame work for all such models for the file-merging methodology and
statistical properties of some of them are given in Ramalingam (1985) and Goel and
Ramalingam (1985). One useful model for obtaining matched pairs, introduced by
DeGroot, Feder and Goel (1971) is as follows: Let W i = (Ti, Ui), i=1,2 .... n be lid

random vectors which are not observable as (t, u) pairs. Instead,it is assumed that the
marginal data on t and u are available on these n individuals as follows.

File 1: x , x2 ......... Xn, which is an unknown permutation of the unobserved
values t1 ,..,t n

File 2: Ul, U?,..,Un

Thus data in File 1 is available at one agency and the data in File 2 is available
at the other agency. Clearly , what is missing from the conceptually unobserved values
on (t,u) is the pairing which, identifies the ti and ui that pertain to the same individual.

DeGroot, Feder and Goel (1971), call the marginal observed data x1 ,..,xn ; u1 ... un  a

Broken Random Sample from the population of (T,U).

A In this paper, we shall derive some statistical properties of known stategies to

merge Filel and File 2 in order to reconstruct paired data on (Ti,Ui) for the bivariate

matching problem in which both T and U are one-dimensional variables. We shall
begin with some notations.

1.1 Notations. Let (T,U) have an absolutely continuous joint CDF H(t,u) and joint
density h(t,u). The marginal dis'ribution functions of T and U will be denoted by G(
and F( . ) respectively and I [.] wA denote the indicator function of the event.

-" " , .- - ".'-" " *" * " "'- % % " - *',"% %1% %- k- ... - .
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Let Gn (x) = (1/n) ,i I [Ti < x] denote the empirical CDF based on the
variables T1 ,..., Tn. Similarly, Fn (x) denotes the empirical COF based on U1 ,..., Un.

Let R(i) = _ I [T i -- T oc I denote the rank of Ti ,i=1,2,...,n. Similarly S(1 ) ..., S(n)
denote the ranks of the variables U1,U2, ...,U n .

Let (p = ( p(l),..., p(n) ) be a permutation of the integers 1,2,...,n. The set of all n!
permutations of 1,2,... ,n will be denoted by T. Let p* = (1,2, ... , n) denote the identity
permutation.

Let c > 0. For all i= 1,2,... n, and (PET define events Ani (p , - )and Ani (E ) as

follows:

Ani(, ) { U( (R(i)))-U I <5 }. (1.1)

Ani (e) Ani (T *,) (1.2)

For all 1 j,k< n, let

ljk I[Uj-Uk>- cl-I [Tj-Tk>0], (1.3)

2jk I[Tj-Tk>0]- I[Uj-Uk>-e], (1.4)

and 01 =d 02 denotes that the vectors 51and 02 have identical distributions.

2. A Class of Matching Problems. Suppose that h(t,u) has the monotone
likelihood ratio (MLR) property. That is, for all reals tl < t2 and ul < u2 , we have

h(tl, ul) h(t2 , u2)> h(tl,u 2) h(t2 ,ul). (2.1)

If the broken random sample x1 ,... Xn,U. un comes from h(t,u), a typical
'matching strategy' based on permutation p r T can be described by pairing x(i )with

u((,(i)). Generalizing the results of DeGroot,Feder & Goel (1971), Chew (1973) showed
that if the MLR property (2.1) holds, then the strategy which maximizes the likelihood
[1, h(xi,u(,(i)) of the parameter p over 4', is to pair the ith smallest x with the ith smallest
u. Note that, though the pairings in the unobserved sample (Ti,Ui), i=1,2, ..., n are
unavailable, the order-statistics of the marginal data on X and U are respectively the

-A ,4
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same as the ordered values of T and U . Hence, we can write the mergeo file on (T,U)
due to any strategy q as

(T (i), U (9 (i)) ,2,...,n (2.2)

Consequently, tht. irged file based on the maximum likelihood pairing (MLP)
mentioned above, is obtained by letting cp = (p in (2.2).

Quality of the Merged File. Ideally, we would like to select a (p for whicn tne file
in (2.2) recovers all (T,U) pairs in the original unobserved data. It is therefore natural to
consider the random variable N ( p), the number of correct matches due to (P, as an
indicator of the performance of the matching (merging) strategy p. The optimraiity of 9°

subject to various criteria, e.g., maximizing the expected number of correct matches,
E (N( q))), is discussed in Ramalingam (1985).

Situations often arise where it is not crucial that, after the two files are merged,
the matched pairs be exactly the same as the pairs of the original data. For example,
when contingency tables analyses are contemplated for grouped data on continuous
variables T and U then, in the absence of the knowledge of the pairings, we would like
to reconstruct the pairs but would not worry too much as long as the u-value in any
matched pair came within a pre-fixed tolerance E (a non-negative number) of the true
u-value that we would get with the ideal matching which recovers all the original pairs.
This type of 'approximate matching' was first introduced by Yahav (1982) who defined
e -correct matching as follows.

Definition 1 (Yahav) . A pair (x(i),u(e(i))), 1 in the merged file (2.2), is said to be V -

correct, if I U(9 (i)) - U[i] I < c, where E > 0 and U[i] is the concomitant of X(i); that is the
true u-value that was paired with T(i) in the original sample.

The number of e -correct matches N ((p, c), in the merged file (2.2) is given bx

N( (, r ) = ,-i I [ I U(,p (i)) -U[i] I -c ] (2.3)

Note that as c . 0, N(4p,£) converges (almost surely) to N(p) ,the numbe if exact
matches.

The counts N(9p) and N(9,:) are useful indices reflecting the re' oility of the

*merged file (2.2) resulting from (p. We shall now derive some statistic, properties of
" N(9p *,c ) In. In view of the fact that Federal files often consist of a 'rge number of

records, it is clear that these asymptotic investigations are useful.

S



3. Asymptotic behavior of N(q)*,E). We first establish a representation for N(q4,r)
as a sum of exchangeable 0 -1 random variables. This representation will lead to an
easy proof of the convergence in probability of the proportion, N(9P*,c) /n, of C -correct
matches due to MLP strategy. The following Lemma(See Randles and Wolfe (1979),
Theorem 1.3.7, page 16) will be needed.

Lemma 1. If . =d v and K (.) is a measurable function (possibly vector valued) defined
on the common support of these random vectors, then K( ) =d K(v)

Proposition 1. Let Ani(T ,e) and N(q ,c) be given by (1.1) and (2.3) respectively. Then,
for all (pe 'P

N(p ,E) = - I [Ani(P,)] (3.1)
where the summands, I [Ani(P ,c)] are exchangeable binary variables.

Proof. The order-statistic U(, (i)) and the concomitant U[i] of T(i) used in (2.3) can be
written in terms of the ranks of T's and U's as follows:

U(,p (i)) = Y_ (x Uoc I [R2ox =(P (i)] (3.2)

U[i ] = a U (x I[R1l( = i] (3.3)

Note that N(9p,c ) is simply a count of how many pairs in the merged file based on (P, as
defined in (2.2), satisfy

I U((p(i)) - U[i] I <E. (3.4)

If (3.4) holds for some i, then 3 a j such that

I U ( (i)) - Uj I < E:. (3.5)

In view of the continuity of (Ti,Ui), this correspondence is one-to-one. Therefore, the
count N((p, - ) is same as the count given by

N (p, c)=X(, I U(o(R( U)))-U .. I ] (3.6)

Hence, (3.1) follows from (3.6) and the definition of Ani, in (1.1).
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In order to show the exchangeability of the summands in (3.1), note that the
original samples are independent and identically distributed vectors. Therefore

Wa (1), Wa (2) ...,Wa (n) }=d { Wl ,W2 ... ,Wn } (3.7)

where ( a ](), a(2), ... oc(n) ) is an arbitrary permutation of (1,2,..., n).

Define a function f (f 1 ,f2 .. fn) from i2n to n by

1 ifT-i lI [b j - b i >__  ]< q(ZitI[aj - a-i _> 0 ) _<  Il [b j - b i 
> -

f = (3.8)
0 otherwise,

for j=1,2,...,n, where (al,bl, ..., an,bn) is an arbitrary point in -.2n and p e P.lt follows

from (3.7) and Lemma 1 that

f (Wa (1), Wa (2) .... W (n)) =d f (W1 ,W2,...,Wn ) (3.9)

Fix j e {1,2,...,n}. Then, using (3.8), we see that fj (Wa (1), Wo (2) ....Wx (n) ) is the
indicator function of the event

I IUa (j)-Ui c ] (p(Xi I [T( j) Ti O] ) i I[Ua (j) - Ui > -c

or, equivalently, in terms of the ranks R1 1.... R1 n of the T's and the empirical CDF
Gn (.) of U's,

Gn (U(a (j) - C ) < (((Rloa(j))/n < Gn (U o(j) + c ).

Since Gn - 1 (k /n) = U(k) , k=1 ,2,...,n, it follows that fj (Wc (1), Wa (2) .... ,Wu (n) ) is 1 iff
IU (p (R a(j)) U a (j)1 5 c. Consequently,

fj (Wa (1), Wa( 2) ,....Wa(n) ) = I [Ana (j) (9,)]. (3.1Oa)
Similarly,

fj (W1 ...... Wn) = I [Anj (pc)]. (3.1Ob)

The exchangeability of the summands in (3.1) follows from (3.9), (3.10a) and (3.10b).

We shall now review some results concerning E [N (c )/n], due to Yahav (1982),
where N(c ) N (p *,c). Assuming that the distribution of T and U satisfies:

the conditional distribution of U given that T=t is (univariate) normal with
mean t and variance 1,

Yahav (1982) derived the limiting value of Pn (c )=E [N (c )/n] as n - by using the
representation (2.3) in which the summands are functions of the order-statistics of
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U1 ..... Un and the concomitants of the order-statistics of T 1 ..., Tn. His proof relied on
an approximation theorem, about the order-statistics for the above model, given in
Bickel and Yahav(1977). Furthermore, he also reported the findings of a Monte-Carlo
study for ln(C ) in a particular case of his model, namely, T and U are bivariate normal
with correlation p.

We now establish the large-sample behavior of N (c )/n in case of samples from
an arbitrary population. The properties of its expected value follow as a consequence.
In section 4, we indicate how Yahav's simulation study of the small-sample properties
of [n(v ) can be improved upon. We shall then present the results of our Monte-Carlo

study of i.tn(c ) when n is small.

Theorem 1. For broken random samples from an absolutely continuous distribution,

N(c )!n- pr 1 (E as n-o (3.11)
where

p (c) P[ G(U- c ) < F(T) _< G(U+ c)] (3.12)

Proof: Let Ln = N (c )/n. Using the definitions of Ani(E ) in (1.2) and the representation
(3.1) for N (c) as a sum of exchangeable binary variables we obtain

N(£)= _iI [Ani(C)]. (3.13)
It follows that

E (Ln) = n P (An1(c ))/n = P (Anl(1 )). (3.14)

Note that

E (Ln2) = n -2 [ E(N(c )) (2) + E (N( ))] (3.15)

where E (N(c )) (2) is the second factorial moment of N(c ). Using the representation
(3.13), we get

E (Ln2 ) = n -2 [n( 2 ) P{ Ani (c) An2(c ) }+n P(Anl(c ))].

For cy. =1,2.._n, and j=1 ,2 let

V > _ jcxi (3.16)

where the sequences {l o} and { 2oc} are defined in (1.3) and (1.4). It follows that

Anl(E )=(v11/n< 0, v21/n < 0) (3.17)
and

An1 (E )An2(c ) i r)j (v ij/n ! 0). (3.18)



7

Note that, given W 1= (t1 ,u1) ,the infinite sequence 1 12, 1 13.... is exchangeable.
Hence, by the Strong Law of Large Numbers for exchangeable random variables (see
Chow and Teicher,1978, p.223),

v 1 1/n -- E( 1 12 1 Wl) a.s. as n-

. where the conditional expectation is equal to {G(uj- )- F(tj)}. It follows that

vj, /n --4 G(U 1-e )- F(T1 ) ,a.s. as n -*oo. (3.19)

We can show by similar arguments that

Vla /n -- G(Uoc-E )- F(To ) ,a.s. (3.20)
and

v2 x /n -- F(T ) ) G(U a +-c) a.s., (3.21)

where a =1,2. Using the fact (see Serfling, 1980, p.52) that a sequence of vectors
converges almost surely to a given vector iff the componentwise sequences converge
almost surely to the appropriate components of the limit, we get from (3.20) and (3.21)[ vl /n- [G(U1- c ) -F(T1 )

V21/n F(T1) - G(U 1 + £) a.s. (3.22)

V12 /n G(U 2-e)F( 2)I
V2 2 /nL F(T 2 ) - G(U 2 + )j

It follows from (3.17), (3.18), (3.22) and the independence of W 1and W2 that

P(Anl(e ))1 - . (€) (3.23)

and
P(Anl (E) An2 (0)) 2 (F) (3.24)

Therefore (3.14), (3.15) and (3.23), (3.24) imply that as n -- oo

E(Ln) - . (C ), (3.25)

and

Var(Ln) --4 0. (3.26)

It is well known that (3.25) and (3.26) imply the convergence in probability as in (3.11).

The following corollary generalizes Yahav's result concerning Pn (c), the first
moment of N(c )/n.
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Corollaryl . For p>0, Lp
(i) N(c:)/n - (E: as n

(i i) E[ (N(c)/n)P ] - [pj(c)]P as n c,

* Proof: The number of c -correct matches can atmost be n, the number of pairs in the
unobserved bivariate-data.Therefore 0 < N(c )/n 5 1, for all n =2,3.... and {N(C )/n} is a
uniformly bounded sequence of random variables. It is well known that convergence in
probability and Lp-convergence are equivalent for such sequences. Hence (i) follows

easily from Theorem 2. Now, (ii) readily follows from (i) because (I(E )P) is finite for
p>0.

Note that in our results, no assumption about the conditional distribution of U
given T has been made as was the case with Yahav's results.

4. Small Sample behavior of N(c). Yahav used simulated samples from a
bivariate - normal population with mean vector 0 and covariance matrixE 2 p2

= (1-p2 )-1  1 (4.1)
p2

to study small sample properties of In(C). It is important to note that in (4.1), the
variances of T and U are functions of their correlation, p. This is so, because Yahav's
model requires that the conditonal distribution of U given T=t be normal with mean t
and variance 1. The limiting value of Pn(c) for his particular model is given by:

4 (v ) =.'p {1( (x a(p) + c/p)- 1(x a(p) - E/p )} dc(x), (4.2)

where a(p) = [ (1- p )/(1+ p )]112 .

Yahav computed ja (c) by numercal integration for £ = 0.01, 0.05, 0.1 & 0.3.
However, it can be shown that (4.2) simplifies to

'i (c) = 1 - 2 I [-((1 +p )/2) - 1'2) C /p ]. (4.3)

Yahav also provided Monte-Carlo estimates of 1,1n( ), for n = 10, 20,50 and 100
" using the simulated data on T and U. Table 4.1 is a typical example of one of his

results.

J'
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Table 4.1 Expected Average Number of
E-correct Matchings, e = .01

[Yahav(1 982)]

P P 10(0 P20(0 50() 1 l(£)

.001 .5864 .5326 .5275 .5227

.01 .1984 .1648 .1271 .1152

.10 .1512 .1058 .0760 .0591

.30 .1084 .0686 .0389 .0214

.50 .1020 .0582 .0272 .0138

.70 .0960 .0614 .0262 .,105

.90 .0972 .0540 .0206 .0086

.95 .0976 .0496 .0214 .0083

.99 .0960 .0484 .0213 .0080

It is clear from Table 4.1 and equation (4.3) that Pn (F) and p.(c ) decrease as p

ranges from 0.001 to 0.99. In fact (4.3) implies that t (c)=1-2D(-c) for p =1.0 and p(') =

1.0 for p=0, which goes against the intuition. One expects that for an optimal strategy,
such as (p*, Pn(c ) as well as [i(c) must be monotone increasing in p .The problem here

is not with the MLP (p*, but with the covariance matrix Y, defined by (4.1), used in
Yahav's model. Because, as p changes its value, so do the marginal variances of T

, and U. In fact, as p - 1, the marginal variances -> o. To rectify this problem, we have
assumed a bivariate normal model for T and U with means zero, variances one and
the correlation p

For each combination of four values of n, namely 10, 20, 50 and 100, and
twelve values of p , namely 0.00, 0.10 (0.10) 0.90, 0.95, 0.99; 1000 sample were
generated from the bivariate normal population using the IMSL Library routines.
These data were used to obtain Monte-Carlo estimates of Pn(c ), where C was given
the values 0.01, 0.05, 0.1, 0.3, 0.5, 0.75, 1.0.

It is easy to show that, for the above model

p. (c) = P(I Z I c v (2(1-p ))-1/2 ), (4.4)

where Z is a standard normal random variable. It is clear from (4.4) that p (C ) is a

monotone increasing function of p. Using standard-normal CDF tables, p- (t: ) in (4.4)

was computed for each combination of the twelve values of p and the seven values of

c mentioned above. The estimated values of P.n () and the limiting value i (c ) are

given in Tables A.1-A.7 in the Appendix.
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Note that, as expected, n(c) and t(E) in Tables A.1-A.7 are monotone
increasing functions of p for each fixed e. Furthermore, the quality of the merged file is

quite good if we want to reconstruct contingency tables with intervals of size .5 a or
more and the correlation p _ 0.5.

APPENDIX

Table A.1 Expected Average number of
e -correct Matchings, e = 0.01

P 106O(C) 20(04 .50(c) I 1 5 0(C)

0.00 0.106 0.054 0.025 0.015 0.008
0.10 0.113 0.059 0.028 0.017 0.008
0.20 0.127 0.068 0.031 0.018 0.008
0.30 0.138 0.075 0.034 0.020 0.008
0.40 0.155 0.083 0.038 0.023 0.008
0.50 0.174 0.095 0.044 0.026 0.008
0.60 0.199 0.109 0.061 0.036 0.008
0.70 0.231 0.129 0.061 0.036 0.008
0.80 0.279 0.162 0.077 0.046 0.016
0.90 0.374 0.222 0.109 0.067 0.016

0.95 0.476 0.296 0.151 0.094 0.024
0.99 0.700 0.521 0.299 0.191 0.056

.1'

'p



Table A.2 Expected Average number of
e -correct Matchings, c = 0.05

P I O(c) P 20() P50 () 1 O0(E)

0.00 0.127 0.076 0.047 0.037 0.032

0.10 0.134 0.082 0.051 0.040 0.032

0.20 0.149 0.093 0.056 0.043 0.032

0.30 0.161 0.099 0.061 0.047 0.032

0.40 0.180 0.109 0.066 0.052 0.040

0.50 0.201 0.124 0.074 0.057 0.040

0.60 0.228 0.141 0.085 0.065 0.048

0.70 0.262 0.166 0.101 0.076 0.048

0.80 0.317 0.205 0.124 0.094 0.064

0.90 0.420 0.280 0.174 0.135 0.088

0.95 0.529 0.368 0.237 0.186 0.127

0.99 0.769 0.631 0.459 0.377 0.274

Table A.3 Expected Average number of
e -correct Matchings, e = 0.1

P L.Io(C) P,.o( ) laso( ) oo( ) 11()

0.00 0.154 0.102 0.075 0.065 0.056

0.10 0.160 0.110 0.080 0.069 0.056

0.20 0.177 0.121 0.087 0.074 0.064

0.30 0.189 0.130 0.093 0.080 0.064

0.40 0.210 0.143 0.101 0.088 0.072

0.50 0.234 0.161 0.112 0.096 0.080

0.60 0.264 0.181 0. 127 0.108 0.088

0.70 0.302 0.210 0.149 0.126 0.103

0.80 0.303 0.258 0.182 0.154 0.127

0.90 0.477 0.347 0.254 0.218 0.174

0.95 0.594 0.452 0.342 0.299 0.251

0.99 0.839 0.744 0.630 0.580 0.522

**d ~*. ~ ~ ." ~~'-.- s~ -:v b *l%. . . . . -. . . . . . .. V_.
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Table A.4 Expected Average number of
- -correct Matchings, c = 0.3

) p I o(V) P1-)o(C) P50(0 P Ij (c) P (c)

0.00 0.255 0.208 0.184 0.175 0.166

0.10 0.265 0.223 0.195 0.186 0.174

0.20 0.284 0.237 0.207 0.197 0.190

0.30 0.305 0.253 0.221 0.211 0.197

0.40 0.334 0.275 0.240 0.229 0.213

0.50 0.363 0.304 0.263 0.250 0.236

0.60 0.401 0.336 0.293 0.278 0.266

0.70 0.455 0.382 0.337 0.320 0.303
0.80 0.532 0.457 0.403 0.386 0.362
0.90 0.670 0.593 0.540 0.519 0.497
0.95 0.802 0.733 0.689 0.674 0.658

0.99 0.978 0.968 0.961 0.961 0.966

Table A.5 Expected Average number of

c -correct Matchings, £ = 0.5

p ().10(E) .t50 () PI00(E) WO

0.00 0.353 0.311 0.290 0.281 0.274

0.10 0.363 0.330 0.306 0.298 0.289

0.20 0.390 0.348 0.325 0.315 0.311

0.30 0.417 0.371 0.344 0.336 0.326

0.40 0.452 0.400 0.373 0.362 0.354

0.50 0.485 0.437 0.404 0.393 0.383

0.60 0.528 0.478 0.446 0.435 0.425

0.70 0.591 0.536 0.506 0.495 0.484

0.80 0.675 0.628 0.594 0.584 0.570

0.90 0.811 0.773 0.752 0.744 0.737

0.95 0.917 0.896 0.888 0.885 0.886

0.99 0.998 0.999 0.999 0.999 1.000

p .

41 f ~ ~ %1B~~ -
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Table A.6 Expected Average number of
,e -correct Matchings, e = 0.75

P I O(E) .2 0 () ) ( 10 0 (e) ()

0.00 0.468 0.433 0.416 0.409 0.404

0.10 0.488 0.454 0.437 0.429 0.425

0.20 0.514 0,477 0.461 0.453 0.445

0.30 0.539 0.505 0.487 0.480 0.471

0.40 0.582 0.542 0.522 0.514 0.503

0.50 0.621 0.586 0.560 0.555 0.547

0.60 0.662 0.633 0.613 0.606 0.59-,j

0.70 0.727 0.694 0.679 0.673 0.668

0.80 0.810 0.786 0.772 0.768 0.766

0.90 0.919 0.908 0.906 0.904 0.907

0.95 0.979 0.976 0.978 0.979 0.982

0.99 1.000 1.000 1.000 1.000 1.000

Table A.7 Expected Average number of
e-correct Matchings, e= 1.0

P PIo(O) t2o(0) '5o(0 ) 0to(c) WO

0.00 0.570 0.545 0.531 0.524 0.522

0.10 0.593 0.566 0.555 0.549 0.547

0.20 0.621 0.595 0.581 0.576 0.570

0.30 0.646 0.622 0.611 0.605 0.605

0.40 0.690 0.664 0.650 0.644 0.627

0.50 0.729 0.707 0.691 0.688 0.683

0.60 0.772 0.753 0.744 0.741 0.737

0.70 0.830 0.812 0.807 0.805 0.803

0.80 0.898 0.889 0.887 0.885 0.886

0.90 0.970 0.970 0.972 0.972 0.975

0.95 0.996 0.996 0.997 0.997 0.998

0.99 1.000 1.000 1.000 1.000 1.000

.9

.,,
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